함수 \(f(x)\)가 \(x=2\)에서 미분가능하고 \(f'(2)=2\)일 때, 다음 극한값을 구하라.
$$\lim_{x\to2}\frac{x^2-4}{f(x)-f(2)}$$
풀이
\(\displaystyle f'(2)=\lim_{x\to2}\frac{f(x)-f(2)}{x-2}=2\)
\(\displaystyle \lim_{x\to2}\frac{x^2-4}{f(x)-f(2)}=1\div\lim_{x\to2}\frac{f(x)-f(2)}{x^2-4}\)
\(\displaystyle=1\div\lim_{x\to2}\frac{f(x)-f(2)}{(x-2)(x+2)}=1\div \left(f'(2)\lim_{x\to2}\frac{1}{x+2}\right)\)
\(\displaystyle=1\div\left(2\cdot\frac{1}{2+2}\right)=1\div\frac{2}{4}=1\div\frac{1}{2}=2\)